中学生能听懂的2019诺贝尔物理奖下
2023/4/21 来源:不详头部白癜风治疗 http://m.39.net/pf/a_7057267.html
10月8日,诺贝尔物理学奖的一半共同授予了瑞士天文学家米歇尔·马约尔(MichelMayor)和迪迪埃·奎洛兹(DidierQueloz),以奖励他们“发现了围绕类太阳型恒星运行的行星”。到目前为止,人类已经发现了大量系外行星,它们有类似地球的岩石行星,也有类似木星的气态巨行星,有些有大气,有些可能有液态水,还有很多与我们熟知的太阳系行星非常不同。对系外行星的探索改变了人类对我们在宇宙中所处位置的认知。
今天的文章是加州州立大学旧金山分校物理与天文系满威宁教授对年诺贝尔物理学奖科普的下篇,在上篇《用中学生能听懂的语言讲诺贝尔物理奖(上):宇宙从哪里来,到哪里去?》中,她介绍了宇宙的历史和演化。而在这篇文章中,她将详细介绍搜寻太阳系外行星的结果,具体方法和物理原理,继续带我们探索我们是谁,我们在哪里。
撰文
满威宁(加州州立大学旧金山分校物理与天文系终身教授)
又到了每年10月尽可能通俗地给大家介绍诺贝尔物理学奖的时间。我希望尽量用贴近中学物理的语言,讲清楚这些得诺贝尔物理学奖的工作做了什么,为什么要做,怎么做的,有什么结果和展望。
年诺贝尔物理学奖一半颁给美国普林斯顿大学的詹姆斯·皮布尔斯(JamesPeebles),“奖励他在物理宇宙学的理论发现”,另一半则共同授予了瑞士天文学家米歇尔·马约尔(MichelMayor)和迪迪埃·奎洛兹(DidierQueloz)师徒,以奖励他们“发现太阳系之外别的恒星的行星”。
这是非常特殊的一年,因为这两项工作涉及的领域相距甚远,一个研究浩瀚宇宙的发展历史,一个寻找太阳系外的行星,而宇宙物理学和天文物理学在业内其实是完全不同的两个领域。虽然这样的组合十分罕见,但关于获奖原因还是可以合并在这句致辞里:以奖励他们“为人类对宇宙演化和地球在宇宙中的位置的理解做出的贡献”。是的,重要的是这两项工作深刻地改变了人类对世界的认知。
庄子说,“井蛙不可以语于海者,拘于虚也;夏虫不可以语于冰者,笃于时也。”感谢人类两千年科学史上那些智慧的灵魂,帮我们在短暂的生命中看到了那么遥远的过去和未来。
“我们是谁?我们从哪里来,我们要到哪里去?”或许文章《用中学生能听懂的语言讲诺贝尔物理奖(上):宇宙从哪里来,到哪里去?》可以帮助你稍微了解一点宇宙从哪里来。
而这一篇,我们从地球出发,详细介绍科学家们寻找太阳系外行星(Exoplanet)的具体方法,以及已经寻找到了什么。“我们是谁,我们在哪里?”我们的太阳系、我们的地球是特别的吗?是独一无二的吗?
在哥白尼(-)推翻地心说倡导日心说之后,布鲁诺(-)提出太阳也不是宇宙的中心,太阳只是很多恒星中的一颗,宇宙是无限的,没有中心。在上篇文章我们讲过,银河系是宇宙亿万个星系中很平凡的一个,而银河系里面有上千亿颗恒星,太阳只是其中的沧海一粟。
几百年来,一些哲学家和科学家推测太阳系之外有行星存在,另一些哲学家和科学家认为地球上适合生命的种种条件加在一起发生的概率是那么小,或许地球和太阳系真的是独一无二的。很久以来人类没有办法知道,行星是不是普遍存在,别的恒星的行星与太阳系的行星相似度又如何,适合生命生存的地球又到底有多罕见。
智利帕瑞纳天文台上空的银河照片。
图片来源:ESO/Y.Beletsky
离太阳系最近的恒星,半人马座的比邻星属于一个三恒星系统(科幻小说《三体》里三个太阳的灵感来源),距离我们4.3光年远,这个距离光要花4.3年才能走过。人类制造的最快的飞行器旅行者一号,自年发射以来,早已飞出太阳系,它保持6万1千多公里每小时的速度,都还要飞年才能完成4.3光年的距离。璀璨的漫天繁星距离我们实在是太远了,就算它们有行星,但行星不发光,又比恒星小得多,直接用望远镜观察是很难看到的。
那怎么办呢?怎样才能通过观测遥远的恒星星光去找出它们附近暗藏的行星?这真是个天大的难题,人们曾经应用本文后面提到的方法努力了很多年都没有任何收获,到了上个世纪九十年代初期,人们甚至觉得可能永远也不会找到太阳系外的行星了(不要忘了那时计算机等工具还很落后)。
当时有一种解释在天文学界比较有市场:多颗恒星通常在星云里成簇地诞生,而越靠近星云中心的恒星往往质量越大。恒星质量越大,引力越强,核聚变越剧烈,寿命越短。大质量恒星往往几百万年内就几乎耗尽,发生超新星爆发。超新星爆发可以把恒星的一部分质量以十分之一光速抛出去,并发出强大的激波,足以撕碎和推开围绕恒星周围的旋转盘内的一切,扫荡干净本来有可能形成行星的物质。而太阳诞生时可能处于团簇的边缘,质量又不很大,寿命超过百亿年,周围因太阳引力围绕太阳旋转的物质有足够长的时间和机会演化成大大小小的行星。所以说有可能太阳系和行星系统是很罕见的。
甚至在太阳系外的行星被发现之后的好几年,仍然会遭到天文界的反复质疑,直到大量由不同观测方法相互佐证的行星被发现,才得到业界认可。而直到观测确认太阳系附近几乎每个恒星都有行星,人们才彻底接受事实:我们的太阳系并不罕见,更不唯一。
本文主要给大家介绍科学家用哪些方法探测和发现太阳系外的行星,以及相关的物理原理。我们将详细讨论以下这些问题:
1、什么是主序星?恒星的演化和分类2、哪些方法可以探测太阳系外行星?3、多普勒效应是怎么回事?4、恒星会在行星影响下运动吗?5、如何用多普勒径向速度法探测行星?6、什么是探测系外行星的凌日法?7、太阳系外行星探测的里程碑和展望
什么是主序星?恒星的演化和分类
马约尔和奎洛兹师徒因为在年发现了太阳系外第一颗属于主序星(类似于太阳的恒星)的行星,而获得年诺贝尔物理奖的一半。
其实在年,波兰天文学家亚历山大·沃尔兹森(AleksanderWolszczan)已经发现了第一颗太阳系外的行星,不过它属于一颗脉冲星,脉冲星与类似太阳的主序星完全不同。
在文中已经提到,温度越高的物体电磁波辐射的频率越高,波长越短。太阳的辐射包括所有频率的电磁波,因为它表面温度接近摄氏度,辐射的峰值频率在绿光的范围。我们习惯的白色就是从红到紫的可见光的混合,是人类基于太阳辐射的中心频率波段进化出的视觉范围。下面这张图的纵坐标代表恒星光度与太阳光度的比值,横坐标朝右代表温度降低。
恒星的分类
我们可以通过这张图大致了解,大小不同的主序星都嵌在图中的主序带中,包括右下角又小又暗、偏低温的红矮星,中部类似太阳的恒星,和左上角又大又亮、偏蓝的更高温的恒星。主序星的亮度和温度有明显的关联,温度越高亮度越高,颜色越蓝(光谱中心频率越高)。而右上角的红巨星和红超巨星体积庞大,亮度大,温度却偏低,所以光谱偏红。左下角显示的白矮星则体积非常小,亮度也小,温度却较高。
恒星的演化
图片来源:wikipedia
从这个图中可以看到不同质量恒星可能的生命轨迹。一般恒星在其青壮年时期是主序星,比如我们现在的太阳。不同质量的恒星从星云中诞生。中等质量的恒星包括我们的太阳寿命很长,在核聚变反应中耗尽了氢原子核以后会经历红巨星,再到白矮星甚至黑矮星的过程。而大质量的主序星随着核聚变原料的消耗,会比较短命地离开主序星队伍,经过红超巨星阶段和超新星爆发,最终坍缩成黑洞或者密度极大的中子星、脉冲星。脉冲星是高速旋转的中子星,伴随它的自转,我们能周期性地接收到它的电磁波脉冲。
哪些方法可以探测太阳系外行星?
到目前为止,探测太阳系外行星的方法主要有:多普勒速率法、凌日法、凌日时间变分法、直接影像法等等。其中多普勒速率法和凌日法最为有效。
另外脉冲星计时法也可以用来发现脉冲星的行星。通过分析脉冲星的脉冲周期的变化,可以发现影响它们运动的行星。比如年沃尔兹森就已经用这个方法发现了第一个太阳系外行星,脉冲星行星PSRB+12b,但这个方法不能用于类似太阳的主序星。
人们想知道自己在宇宙中是否孤独,所以更渴望、更在乎寻找位于主序星的宜居带的行星,或许这就是为什么沃尔兹森没能共享这次的诺贝尔奖。因为脉冲星是爆发过的、塌缩后的高密度高辐射中子星,他们的周围是超新星爆发清空的巨大空间。所以脉冲星居然有行星是非常颠覆人们的认知的。之后沃尔兹森发现这颗脉冲星PSRB+12有好几个行星,存在行星系,物理意义重大。脉冲星的发现和脉冲双星的发现曾分别获得诺贝尔物理奖。最早发现和确认太阳系外行星的沃尔兹森没能分享关于系外行星探索的诺贝尔奖也是一种遗憾。
下面重点介绍本次获奖工作使用的多普勒径向速率探测法,和迄今发现系外行星数量最多的凌日法(占总数的74%)。
多普勒效应是什么回事?
中小学生都可以在家里用一个简单的实验来理解多普勒效应产生的原理。准备一大盆水,在水面上连续匀速地用手指敲击,我们会得到均匀传播开的水波纹。
静止波源和运动波源对比图:运动波源产生多普勒效应。
图片来源:Soundfly
而如果一边连续敲击水面,一边往前移动手指,就会发现水波不再均匀对称地朝四周扩散,而是波源前方的波长会被压缩,波源后方的波长会被展宽。
换句话说,如果观测者站在波源前进的前方,会遭遇更密集的波峰,所观测到的波峰与波峰之间的时间间隔(周期)更短,观测到的频率更高。而如果观测者站在波源后方,波源正在远离,波长被展宽,观测者就会遭遇更稀疏的波,观测到的时间间隔(周期)变长,频率变低。这就是多普勒效应。
救护车或火车鸣着笛呼啸而来时,我们听到的音调更高(频率高),一旦救护车或者火车扬长而去时,我们听到的鸣笛声音就更低沉(频率低)。
声音的多普勒效应。
图片来源: